Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neural Regen Res ; 18(10): 2208-2218, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37056140

RESUMO

In the central nervous system, the formation of fibrotic scar after injury inhibits axon regeneration and promotes repair. However, the mechanism underlying fibrotic scar formation and regulation remains poorly understood. M2 macrophages regulate fibrotic scar formation after injury to the heart, lung, kidney, and central nervous system. However, it remains to be clarified whether and how M2 macrophages regulate fibrotic scar formation after cerebral ischemia injury. In this study, we found that, in a rat model of cerebral ischemia induced by middle cerebral artery occlusion/reperfusion, fibrosis and macrophage infiltration were apparent in the ischemic core in the early stage of injury (within 14 days of injury). The number of infiltrated macrophages was positively correlated with fibronectin expression. Depletion of circulating monocyte-derived macrophages attenuated fibrotic scar formation. Interleukin 4 (IL4) expression was strongly enhanced in the ischemic cerebral tissues, and IL4-induced M2 macrophage polarization promoted fibrotic scar formation in the ischemic core. In addition, macrophage-conditioned medium directly promoted fibroblast proliferation and the production of extracellular matrix proteins in vitro. Further pharmacological and genetic analyses showed that sonic hedgehog secreted by M2 macrophages promoted fibrogenesis in vitro and in vivo, and that this process was mediated by secretion of the key fibrosis-associated regulatory proteins transforming growth factor beta 1 and matrix metalloproteinase 9. Furthermore, IL4-afforded functional restoration on angiogenesis, cell apoptosis, and infarct volume in the ischemic core of cerebral ischemia rats were markedly impaired by treatment with an sonic hedgehog signaling inhibitor, paralleling the extent of fibrosis. Taken together, our findings show that IL4/sonic hedgehog/transforming growth factor beta 1 signaling targeting macrophages regulates the formation of fibrotic scar and is a potential therapeutic target for ischemic stroke.

2.
J Neurosci Res ; 92(5): 587-96, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24464877

RESUMO

Mesenchymal stem cells (MSCs) can differentiate into neuronal-like cell types under specific conditions. The classical antioxidant inducers such as ß-mercaptoethanol (BME), butylated hydroxyanisol (BHA), and dimethylsulfoxide (DMSO) are limited in clinical because of toxicity. Resveratrol, a safer, natural antioxidant, can stimulate osteoblastic differentiation of MSCs. However, its effect of inducing MSCs to differentiate into neuronal-like cells is less well studied, and its differentiated mechanisms are not well understood. Sonic hedgehog (Shh) signaling, mediated by the primary cilia, is crucial for embryonic development and tissue differentiation, but relatively little is known about the role of Shh signaling and primary cilia in neuronal-like differentiation of MSCs. Here we show that primary cilia, harboring patched 1 (Ptc1), are present in growth-arrested MSCs and that smoothened (Smo) and Gli1 are present in cytoplasm of MSCs, which are important components of the Shh signaling pathway. After resveratrol induction, MSCs acquire neuronal-like cell morphologies and phenotypes, Smo translocates to the primary cilia, Gli1 enters the nucleus, and expressions of Smo and Gli1 proteins increase, which can be inhibited by cyclopamine, a Smo antagonist. Meanwhile, Smo agonist (SAG) attains similar effects compared with the resveratrol group. These data indicate that resveratrol can induce MSCs to differentiate into neuronal-like cells and activate Shh signaling pathway in the primary cilia. Moreover, the primary cilia and Shh signaling are essential for resveratrol inducing neuronal-like differentiation of MSCs. Our finding is important for understanding the neuronal-like differentiation mechanism of MSCs for resveratrol and promoting its clinical therapeutic utility.


Assuntos
Antioxidantes/farmacologia , Diferenciação Celular/efeitos dos fármacos , Proteínas Hedgehog/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Neurônios/citologia , Transdução de Sinais/efeitos dos fármacos , Estilbenos/farmacologia , Animais , Bromodesoxiuridina/metabolismo , Células Cultivadas , Cílios/efeitos dos fármacos , Cílios/fisiologia , Cílios/ultraestrutura , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Microscopia Eletrônica de Varredura , Ratos , Ratos Sprague-Dawley , Resveratrol , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...